Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Several inhibitory interneuron subtypes have been identified as critical in regulating sensory responses. However, the specific contribution of each interneuron subtype remains uncertain. In this work, we explore the contributions of cell type–specific activity and synaptic connections to the dynamics of a spatially organized spiking neuron network. We find that the firing rates of the somatostatin (SOM) interneurons align closely with the level of network synchrony irrespective of the target of modulatory input. Further analysis reveals that inhibition from SOM to parvalbumin interneurons must be limited to allow gradual transitions from asynchrony to synchrony and that the strength of recurrent excitation onto SOM neurons determines the level of synchrony achievable in the network. Our results are consistent with recent experimental findings on cell type–specific manipulations. Overall, our results highlight common dynamic regimes achieved across modulations of different cell populations and identify SOM cells as the main driver of network synchrony.more » « lessFree, publicly-accessible full text available June 27, 2026
-
Recordings from pre-Bötzinger complex neurons responsible for the inspiratory phase of the respiratory rhythm reveal a ramping burst pattern, starting around the time that the transition from expiration to inspiration begins, in which the spike rate gradually rises until a transition into a high-frequency burst occurs. The spike rate increase along the burst is accompanied by a gradual depolarization of the plateau potential that underlies the spikes. These effects may be functionally important for inducing the onset of inspiration and hence maintaining effective respiration; however, most mathematical models for inspiratory bursting do not capture this activity pattern. Here, we study how the modulation of spike height and afterhyperpolarization via the slow inactivation of an inward current can support various activity patterns including ramping bursts. We use dynamical systems methods designed for multiple timescale systems, such as bifurcation analysis based on timescale decomposition and averaging over fast oscillations, to generate an understanding of and predictions about the specific dynamic effects that lead to ramping bursts. We also analyze how transitions between ramping and other activity patterns may occur with parameter changes, which could be associated with experimental manipulations, environmental conditions, and/or development.more » « less
-
Abstract Similar activity patterns may arise from model neural networks with distinct coupling properties and individual unit dynamics. These similar patterns may, however, respond differently to parameter variations and specifically to tuning of inputs that represent control signals. In this work, we analyze the responses resulting from modulation of a localized input in each of three classes of model neural networks that have been recognized in the literature for their capacity to produce robust three-phase rhythms: coupled fast-slow oscillators, near-heteroclinic oscillators, and threshold-linear networks. Triphasic rhythms, in which each phase consists of a prolonged activation of a corresponding subgroup of neurons followed by a fast transition to another phase, represent a fundamental activity pattern observed across a range of central pattern generators underlying behaviors critical to survival, including respiration, locomotion, and feeding. To perform our analysis, we extend the recently developed local timing response curve (lTRC), which allows us to characterize the timing effects due to perturbations, and we complement our lTRC approach with model-specific dynamical systems analysis. Interestingly, we observe disparate effects of similar perturbations across distinct model classes. Thus, this work provides an analytical framework for studying control of oscillations in nonlinear dynamical systems and may help guide model selection in future efforts to study systems exhibiting triphasic rhythmic activity.more » « less
-
Abstract Square-wave bursting is an activity pattern common to a variety of neuronal and endocrine cell models that has been linked to central pattern generation for respiration and other physiological functions. Many of the reduced mathematical models that exhibit square-wave bursting yield transitions to an alternative pseudo-plateau bursting pattern with small parameter changes. This susceptibility to activity change could represent a problematic feature in settings where the release events triggered by spike production are necessary for function. In this work, we analyze how model bursting and other activity patterns vary with changes in a timescale associated with the conductance of a fast inward current. Specifically, using numerical simulations and dynamical systems methods, such as fast-slow decomposition and bifurcation and phase-plane analysis, we demonstrate and explain how the presence of a slow negative feedback associated with a gradual reduction of a fast inward current in these models helps to maintain the presence of spikes within the active phases of bursts. Therefore, although such a negative feedback is not necessary for burst production, we find that its presence generates a robustness that may be important for function.more » « less
-
Despite considerable study of population cycles, the striking variability of cycle periods in many cyclic populations has received relatively little attention. Mathematical models of cyclic population dynamics have historically exhibited much greater regularity in cycle periods than many real populations, even when accounting for environmental stochasticity. We contend, however, that the recent focus on understanding the impact of long, transient but recurrent epochs within population oscillations points the way to a previously unrecognized means by which environmental stochasticity can create cycle period variation. Specifically, consumer–resource cycles that bring the populations near a saddle point (a combination of population sizes toward which the populations tend, before eventually transitioning to substantially different levels) may be subject to a slow passage effect that has been dubbed a ‘saddle crawlby'. In this study, we illustrate how stochasticity that generates variability in how close predator and prey populations come to saddles can result in substantial variability in the durations of crawlbys and, as a result, in the periods of population cycles. Our work suggests a new mechanistic hypothesis to explain an important factor in the irregular timing of population cycles and provides a basis for understanding when environmental stochasticity is, and is not, expected to generate cyclic dynamics with variability across periods.more » « less
An official website of the United States government
